“在0中找1”的版本间的差异
跳到导航
跳到搜索
Jihongchang(讨论 | 贡献) (→代码实现示例) |
Jihongchang(讨论 | 贡献) |
||
第84行: | 第84行: | ||
10 | 10 | ||
</syntaxhighlight>时间复杂度O(n),n是0、1一共有多少位。 | </syntaxhighlight>时间复杂度O(n),n是0、1一共有多少位。 | ||
+ | |||
+ | |||
+ | === x&x-1的解法 === | ||
+ | 思路: | ||
+ | |||
+ | x&(x-1)如果为1则计数,然后无论是否计数继续执行x&(x-1)的操作,直到 x为0; | ||
+ | |||
+ | 原理: | ||
+ | |||
+ | 假设 x 是“10000001”,第1次: | ||
+ | {| class="wikitable" | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |1 | ||
+ | !x | ||
+ | |- | ||
+ | |& | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | !x-1 | ||
+ | |- | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | ! | ||
+ | |} | ||
+ | 第2次: | ||
+ | {| class="wikitable" | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | !x | ||
+ | |- | ||
+ | |& | ||
+ | |0 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | !x-1 | ||
+ | |- | ||
+ | | | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | ! | ||
+ | |} | ||
+ | 再比如: | ||
+ | |||
+ | x是“10101010”,第1次: | ||
+ | {| class="wikitable" | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | !x | ||
+ | |- | ||
+ | |& | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |1 | ||
+ | !x-1 | ||
+ | |- | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | ! | ||
+ | |} | ||
+ | 第2次: | ||
+ | {| class="wikitable" | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | !x | ||
+ | |- | ||
+ | |& | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | !x-1 | ||
+ | |- | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | ! | ||
+ | |} | ||
+ | 第3次: | ||
+ | {| class="wikitable" | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | !x | ||
+ | |- | ||
+ | |& | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | !x-1 | ||
+ | |- | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | ! | ||
+ | |} | ||
+ | 第4次: | ||
+ | {| class="wikitable" | ||
+ | | | ||
+ | |1 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | !x | ||
+ | |- | ||
+ | |& | ||
+ | |0 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | |1 | ||
+ | !x-1 | ||
+ | |- | ||
+ | | | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | |0 | ||
+ | ! | ||
+ | |} |
2022年11月14日 (一) 04:01的版本
https://www.bilibili.com/video/BV1UK411D724
题目
比如给定“10001110”,答案是4;
在比如“10001000”,答案是2;
那如果是“1000111010001000……”非常多、非常长呢?
与运算和右移的解
思路:
位运算的与操作:
……1(2)&1(2)=……1(2)
……1 | |
& | 1 |
……1 |
……0(2)&1(2)=……0(2)
……0 | |
& | 1 |
……0 |
右位移
>>
1 | 1 | 1 | 0 |
→
0 | 1 | 1 | 1 |
代码实现示例
public class Test {
public static void main(String[] args) {
long count1in0 = 0b00101010010100000000011111;
int count = 0;
while (count1in0 != 0) {
if ((count1in0 & 1) % 10 == 1) {
count++;
}
count1in0 >>= 1;
}
System.out.println(count);
}
}
10
时间复杂度O(n),n是0、1一共有多少位。
x&x-1的解法
思路:
x&(x-1)如果为1则计数,然后无论是否计数继续执行x&(x-1)的操作,直到 x为0;
原理:
假设 x 是“10000001”,第1次:
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | x | |
---|---|---|---|---|---|---|---|---|---|
& | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | x-1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
第2次:
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | x | |
---|---|---|---|---|---|---|---|---|---|
& | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x-1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
再比如:
x是“10101010”,第1次:
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | x | |
---|---|---|---|---|---|---|---|---|---|
& | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | x-1 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
第2次:
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | x | |
---|---|---|---|---|---|---|---|---|---|
& | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | x-1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
第3次:
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | x | |
---|---|---|---|---|---|---|---|---|---|
& | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | x-1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
第4次:
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | x | |
---|---|---|---|---|---|---|---|---|---|
& | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x-1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |