依赖倒置原则
依赖倒置原则的定义
Dependence Inversion Principle
包含三层含义:
- 高层模块不应该依赖低层模块,两者都应该依赖其抽象;
- 抽象不应该依赖细节;
- 细节应该依赖抽象。
高层模块和底层模块容易理解,每一个逻辑的实现都是由原子逻辑组成的,不可分割的原子逻辑就是低层模块,原子逻辑的再组装就是高层模块。
那什么是抽象?什么又是细节呢?
在 Java 语言中,抽象就是指接口或抽象类,两者都是不能直接被实例化的;
细节就是实现类,实现接口或继承抽象类而产生的类就是细节,
其特点就是可以直接被实例化,也就是可以加上一个关键字 new 产生一个对象。
依赖倒置原则在 Java 语言中的表现就是:
- 模块间的依赖通过抽象发生,实现类之间不发生直接的依赖关系,其依赖关系是通过接口或抽象类产生的;
- 接口或抽象类不依赖于实现类;
- 实现类依赖接口或抽象类。
更加精简的定义就是“面向接口编程”——OOD(Object-Oriented Design,面向对象设计)的精髓之一。
言而无信,你太需要契约
采用依赖倒置原则可以减少类间的耦合性,提高系统的稳定性,降低并行开发引起的风险,提高代码的可读性和可维护性。
证明一个定理是否正确,有两种常用的方法:
一种是根据提出的论题,经过一番论证,推出和定理相同的结论,这是顺推证法;
还有一种是首先假设提出的命题是伪命题,然后推导出一个荒谬、与已知条件互斥的结论,这是反证法。
我们今天就用反证法来证明依赖倒置原则是多么优秀和伟大!
论题:依赖倒置原则可以减少类间的耦合性,提高系统的稳定性,降低并行开发引起的风险,提高代码的可读性和可维护性。
反论题:不使用依赖倒置原则也可以减少类间的耦合性,提高系统的稳定性,降低并行开发引起的风险,提高代码的可读性和可维护性。
我们通过一个例子来说明反论题是不成立的。
现在的汽车越来越便宜了,一个卫生间的造价就可以买到一辆不错的汽车,有汽车就必然有人来驾驶,死机驾驶奔驰车的类图如图所示:
奔驰车可以提供一个方法 run ,代表车辆运行,实现过程如代码:
/**
* 司机源代码
*/
public class Driver {
public void drive(Benz benz) {
benz.run();
}
}
司机通过调用奔驰车的 run 方法开动奔驰车,其源代码如:
/**
* 奔驰车源代码
*/
public class Benz {
public void run() {
System.out.println("奔驰汽车开始运行...");
}
}
有车,有司机,在 Client 场景类产生相应的对象,其源代码如:
/**
* 场景类源代码
*/
public class Client {
public static void main(String[] args) {
Driver zhangSan = new Driver();
Benz benz = new Benz();
//张三开奔驰车
zhangSan.drive(benz);
}
}
通过以上的代码,完成了司机开动奔驰车的场景,到目前为止,这个司机开奔驰车的项目没有任何问题。
我们常说“危难时刻见真情”,我们把这句话移植到技术上就成了“变更才显真功夫”,业务需求变更永无休止,技术前进就永无止境,在发生变更时才能发觉我们的设计或程序是否是松耦合。
我们在一段貌似磐石的程序上加上一块小石头:张三司机不仅要开奔驰车,还要开宝马车,又该怎么实现呢?
麻烦出来了,那好,我们走一步是一步,我们先把宝马车产生出来,实现过程如下:
/**
* 宝马车源代码
*/
public class BMW {
public void run() {
System.out.println("宝马汽车开始运行...");
}
}
宝马车也产生了,但是我们却没有办法让张三开动起来,为什么?
张三没有开动宝马车的方法呀!一个拿有 C 驾照的司机竟然只能开奔驰车而不能开宝马车,这也太不合理了!
在现实世界都不允许存在这种情况,何况程序还是对现实世界的抽象,我们的设计出现了问题:司机类和奔驰车类之间是紧耦合的关系,其导致的结果就是系统的可维护性大大降低,可读性降低,两个相似的类需要阅读两个文件,你乐意吗?
还有稳定性,什么是稳定性?固化的、健壮的才是稳定的,这里只是增加了一个车类就需要修改司机类,这不是稳定性,这是易变性。
被依赖者的变更竟然让依赖者来承担修改的成本,这样的依赖关系谁肯承担!证明到这里,我们已经知道反论题已经部分不成立了。