Spring Boot 中使用 Kafka
跳到导航
跳到搜索
https://www.bilibili.com/video/BV1Xy4y1G7zA?p=23
1.引入依赖
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
2.编写配置文件
server:
port: 8080
spring:
kafka:
bootstrap-servers:
- 192.168.137.200:9092
- 192.168.137.200:9093
- 192.168.137.200:9094
producer: # 生产者
retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
batch-size: 16384
buffer-memory: 33554432
acks: 1
# 指定消息 key 和 消息体的编解码方式
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
group-id: default-group
enable-auto-commit: false
auto-offset-reset: earliest
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
max-poll-records: 500
listener:
# 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交
# RECORD
# 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后提交
# BATCH
# 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于 TIME 时提交
# TIME
# 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,被处理 record 数量大于等于 COUNT 时提交
# COUNT
# TIME | COUNT 有一个条件满足时提交
# COUNT_TIME
# 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,手动调用 Acknowledgment.acknowledge() 后提交
# MANUAL
# 手动调用 Acknowledgment.acknowledge() 后立即提交,一般使用这种
ack-mode: MANUAL_IMMEDIATE
redis:
host: 127.0.0.1
3.编写消息生产者
package io.github.jihch.controller;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@RequestMapping("/msg")
public class MyKafkaController {
private final static String TOPIC_NAME = "my-replicated-topic";
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@RequestMapping("/send")
public String sendMessage() {
kafkaTemplate.send(TOPIC_NAME, 0, "key", "this is a message");
return "send success!";
}
}
4.编写消费者
package io.github.jihch.consumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Component;
@Component
public class MyConsumer {
@KafkaListener(topics = "my-replicated-topic", groupId = "MyGroup1")
public void listenGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println(value);
System.out.println(record);
//手动提交 offset
ack.acknowledge();
}
}
5.消费者中配置消费主题、分区和偏移量
https://www.bilibili.com/video/BV1Xy4y1G7zA?p=24
@KafkaListener(groupId = "testGroup", topicPartitions = {
@TopicPartition(topic = "topic1", partitions = {"0", "1"}),
@TopicPartition(topic = "topic2", partitions = "0",
partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
}, concurrency = "3") //concurrency 就是同组下的消费者个数,就是并发消费数,建议小于等于分区数
public void listenGroupPro(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println(value);
System.out.println(record);
//手动提交 offset
ack.acknowledge();
}