“Spring Boot 中使用 Kafka”的版本间的差异

来自姬鸿昌的知识库
跳到导航 跳到搜索
(建立内容为“1”的新页面)
 
 
(未显示同一用户的2个中间版本)
第1行: 第1行:
1
+
https://www.bilibili.com/video/BV1Xy4y1G7zA?p=23
 +
 
 +
=== 1.引入依赖 ===
 +
<syntaxhighlight lang="xml">
 +
<dependency>
 +
<groupId>org.springframework.kafka</groupId>
 +
<artifactId>spring-kafka</artifactId>
 +
</dependency>
 +
</syntaxhighlight>
 +
 
 +
=== 2.编写配置文件 ===
 +
<syntaxhighlight lang="yaml">
 +
server:
 +
  port: 8080
 +
 
 +
spring:
 +
  kafka:
 +
    bootstrap-servers:
 +
      - 192.168.137.200:9092
 +
      - 192.168.137.200:9093
 +
      - 192.168.137.200:9094
 +
    producer: # 生产者
 +
      retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
 +
      batch-size: 16384
 +
      buffer-memory: 33554432
 +
      acks: 1
 +
      # 指定消息 key 和 消息体的编解码方式
 +
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
 +
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
 +
    consumer:
 +
      group-id: default-group
 +
      enable-auto-commit: false
 +
      auto-offset-reset: earliest
 +
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
 +
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
 +
      max-poll-records: 500
 +
    listener:
 +
      # 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交
 +
      # RECORD
 +
 
 +
      # 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后提交
 +
      # BATCH
 +
 
 +
      # 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于 TIME 时提交
 +
      # TIME
 +
 
 +
      # 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,被处理 record 数量大于等于 COUNT 时提交
 +
      # COUNT
 +
 
 +
      # TIME | COUNT 有一个条件满足时提交
 +
      # COUNT_TIME
 +
 
 +
      # 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,手动调用 Acknowledgment.acknowledge() 后提交
 +
      # MANUAL
 +
 
 +
      # 手动调用 Acknowledgment.acknowledge() 后立即提交,一般使用这种
 +
      ack-mode: MANUAL_IMMEDIATE
 +
  redis:
 +
    host: 127.0.0.1
 +
 
 +
</syntaxhighlight>
 +
 
 +
=== 3.编写消息生产者 ===
 +
<syntaxhighlight lang="java">
 +
package io.github.jihch.controller;
 +
 
 +
import org.springframework.beans.factory.annotation.Autowired;
 +
import org.springframework.kafka.core.KafkaTemplate;
 +
import org.springframework.web.bind.annotation.RequestMapping;
 +
import org.springframework.web.bind.annotation.RestController;
 +
 
 +
@RestController
 +
@RequestMapping("/msg")
 +
public class MyKafkaController {
 +
 
 +
    private final static String TOPIC_NAME = "my-replicated-topic";
 +
 
 +
    @Autowired
 +
    private KafkaTemplate<String, String> kafkaTemplate;
 +
 
 +
    @RequestMapping("/send")
 +
    public String sendMessage() {
 +
        kafkaTemplate.send(TOPIC_NAME, 0, "key", "this is a message");
 +
        return "send success!";
 +
    }
 +
 
 +
}
 +
 
 +
</syntaxhighlight>
 +
 
 +
=== 4.编写消费者 ===
 +
<syntaxhighlight lang="java">
 +
package io.github.jihch.consumer;
 +
 
 +
import org.apache.kafka.clients.consumer.ConsumerRecord;
 +
import org.springframework.kafka.annotation.KafkaListener;
 +
import org.springframework.kafka.support.Acknowledgment;
 +
import org.springframework.stereotype.Component;
 +
 
 +
@Component
 +
public class MyConsumer {
 +
 
 +
    @KafkaListener(topics = "my-replicated-topic", groupId = "MyGroup1")
 +
    public void listenGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
 +
        String value = record.value();
 +
        System.out.println(value);
 +
        System.out.println(record);
 +
 
 +
        //手动提交 offset
 +
        ack.acknowledge();
 +
    }
 +
 
 +
}
 +
 
 +
</syntaxhighlight>
 +
 
 +
=== 5.消费者中配置消费主题、分区和偏移量 ===
 +
https://www.bilibili.com/video/BV1Xy4y1G7zA?p=24<syntaxhighlight lang="java">
 +
    @KafkaListener(groupId = "testGroup", topicPartitions = {
 +
            @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
 +
            @TopicPartition(topic = "topic2", partitions = "0",
 +
            partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
 +
    }, concurrency = "3") //concurrency 就是同组下的消费者个数,就是并发消费数,建议小于等于分区数
 +
    public void listenGroupPro(ConsumerRecord<String, String> record, Acknowledgment ack) {
 +
 
 +
        String value = record.value();
 +
        System.out.println(value);
 +
        System.out.println(record);
 +
 
 +
        //手动提交 offset
 +
        ack.acknowledge();
 +
    }
 +
</syntaxhighlight>

2022年8月28日 (日) 02:55的最新版本

https://www.bilibili.com/video/BV1Xy4y1G7zA?p=23

1.引入依赖

<dependency>
	<groupId>org.springframework.kafka</groupId>
	<artifactId>spring-kafka</artifactId>
</dependency>

2.编写配置文件

server:
  port: 8080

spring:
  kafka:
    bootstrap-servers:
      - 192.168.137.200:9092
      - 192.168.137.200:9093
      - 192.168.137.200:9094
    producer: # 生产者
      retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送
      batch-size: 16384
      buffer-memory: 33554432
      acks: 1
      # 指定消息 key 和 消息体的编解码方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    consumer:
      group-id: default-group
      enable-auto-commit: false
      auto-offset-reset: earliest
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      max-poll-records: 500
    listener:
      # 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交
      # RECORD

      # 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后提交
      # BATCH

      # 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于 TIME 时提交
      # TIME

      # 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,被处理 record 数量大于等于 COUNT 时提交
      # COUNT

      # TIME | COUNT 有一个条件满足时提交
      # COUNT_TIME

      # 当每一批 poll() 的数据被消费者监听器(ListenerConsumer)处理之后,手动调用 Acknowledgment.acknowledge() 后提交
      # MANUAL

      # 手动调用 Acknowledgment.acknowledge() 后立即提交,一般使用这种
      ack-mode: MANUAL_IMMEDIATE
  redis:
    host: 127.0.0.1

3.编写消息生产者

package io.github.jihch.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/msg")
public class MyKafkaController {

    private final static String TOPIC_NAME = "my-replicated-topic";

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @RequestMapping("/send")
    public String sendMessage() {
        kafkaTemplate.send(TOPIC_NAME, 0, "key", "this is a message");
        return "send success!";
    }

}

4.编写消费者

package io.github.jihch.consumer;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Component;

@Component
public class MyConsumer {

    @KafkaListener(topics = "my-replicated-topic", groupId = "MyGroup1")
    public void listenGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
        String value = record.value();
        System.out.println(value);
        System.out.println(record);

        //手动提交 offset
        ack.acknowledge();
    }

}

5.消费者中配置消费主题、分区和偏移量

https://www.bilibili.com/video/BV1Xy4y1G7zA?p=24

    @KafkaListener(groupId = "testGroup", topicPartitions = {
            @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
            @TopicPartition(topic = "topic2", partitions = "0",
            partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
    }, concurrency = "3") //concurrency 就是同组下的消费者个数,就是并发消费数,建议小于等于分区数
    public void listenGroupPro(ConsumerRecord<String, String> record, Acknowledgment ack) {

        String value = record.value();
        System.out.println(value);
        System.out.println(record);

        //手动提交 offset
        ack.acknowledge();
    }